a2 United States Patent

John et al.

US009329912B2

US 9,329,912 B2
May 3, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CORE-AFFINE PROCESSING ON
SYMMETRIC MULTTPROCESSING SYSTEMS

(735)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

Inventors: Rekesh John, Livermore, CA (US);
Srinivasa R. Addepalli, San Jose, CA
(US)

Assignee: FREESCALE SEMICONDUCTOR,
INC., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 917 days.

Appl. No.: 13/549,342

Filed: Jul. 13, 2012

Prior Publication Data

US 2014/0019982 A1l Jan. 16, 2014

Int. CL.

GO6F 9/54 (2006.01)

U.S. CL

CPC .. GO6F 9/544 (2013.01); GO6F 9/54 (2013.01)

Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,424,992 B2* 7/2002 Devarakonda et al. 709/203
7,590,736 B2* 9/2009 Hydrieetal. 709/226
7,606,929 B2* 10/2009 Gbadegesin et al. ... 709/235
7,613,822 B2* 11/2009 Joyetal. ...ccooeevvrnenee. 709/235
7,693,050 B2* 4/2010 Achlioptas et al. 370/229
7,889,734 B1* 2/2011 Hendeletal. 370/392
8,260,996 B2* 9/2012 Wolfe 710/269
8,327,363 B2* 12/2012 Gopalan et al. 718/102
8,856,794 B2* 10/2014 Kruglick 718/102
8,861,434 B2* 10/2014 Khaweretal. 370/328

2004/0165590 Al* 82004 Reineretal. 370/392

2010/0064286 Al 3/2010 Pinter et al.

2013/0342989 Al* 12/2013 Singleton 361/679.39

* cited by examiner

Primary Examiner — Hassan Kizou
Assistant Examiner — Hashim Bhatti
(74) Attorney, Agent, or Firm — Sherry W. Schumm

(57) ABSTRACT

Embodiments of a symmetric multi-processing (SMP) sys-
tem can provide full affinity of'a connection to a core proces-
sor when desired, even when ingress packet distribution, pro-
tocol processing layer and applications may autonomously
process packets on different cores of the SMP system. In an
illustrative embodiment, the SMP system can include a server
application that is configured to create a plurality of tasks and
bind the plurality of tasks to a plurality of core processors.
One or more of the plurality of tasks are configured to create
a corresponding listening endpoint socket, bind and listen on
a protocol address that is common to the plurality of tasks.

18 Claims, 10 Drawing Sheets

SMP SYSTEM

/

306
[

306
AN

APPLICATION

306

L s
|SRVR| |SRVR| |SRVR| |SRVR| |SRVR|

\SPACE \ /
N 314, 304
AWAY 11 Ir 1/
4 318 318 N
SSP 318
3144]
314 N TCP/IP
STACK
A 77 \320
KERNEL ETHERNET DRIVER

_SPACE ~316 \)
312

‘300

U.S. Patent May 3, 2016 Sheet 1 of 10 US 9,329,912 B2

SMP SYSTEM
SERVER APPLICATION
SERVER || SERVER || SERVER || SERVER
| 7AsK ||| TAsk ||| TAsk |[|| TAsSK |
306 306|| | 4106.1 306
luwzo lu'wzo luqzoj lu*120
A4 7 /

132 132.1 132 100

104

|SOCKET||SOCKET||SOCKET||SOCKET|
\ 108 | 10817/ 108 /STACK

112

oL 1141
INFO

) PROTOCOL

118 LAYER
CORE // CORE
<
102.1

102
ETHERNET CONTROLLER
CLASSIFIER I\
128 1136
Y
12021 | | Q-1203
A 4
NETWORK CLIENT I
134
T

FIG. 1

U.S. Patent

May 3, 2016 Sheet 2 of 10

US 9,329,912 B2

SMP SYSTEM

APPLICATION

PRIOR ART

FIG. 2

214 TCP/IP
STACK
A 11 11 Il 17 \220
KERNEL ETHERNET DRIVER
_SPACE 216)
212
200

U.S. Patent

May 3, 2016 Sheet 3 of 10

US 9,329,912 B2

SMP SYSTEM

APPLICATION

FIG. 2.1

218
TCP/IP
STACK
AR Y\ N\ \220
KERNEL ETHERNET DRIVER 216
SPACE [~
\ _/
212
200
PRIOR ART

U.S. Patent May 3, 2016 Sheet 4 of 10 US 9,329,912 B2
SMP SYSTEM
4 I

APPLICATION

306
AN

L

SRVR

FIG. 3

SPACE
\C i J
N H31aL/ 304
\\ 11 |4 3/
4 318 318)
SSP 318
31444
314 N TCP/IP
STACK
A\t /7 \320
KERNEL ETHERNET DRIVER
_SPACE ~316)
312
‘300

U.S. Patent May 3, 2016 Sheet 5 of 10 US 9,329,912 B2

SMP SYSTEM
SERVER || SERVER || SERVER || SERVER
[Task |||l T1ASK |[[|| TASK |[|[TASK |
406 206|| |~ 406 206
lgmzo lQL420 lQMO lgmzo
2241 422 424J- 400

|SOCKET||SOCKETllSOCKET||SOCKET|
\ 408 408 /STACK

412
414 Spq4
PROTOCOL
LAYER
CORE // CORE
N
402.1

INGRESS PACKET 402
DISTRIBUTION UNIT

CLASSIFIER [\
428

FIG. 4

U.S. Patent May 3, 2016 Sheet 6 of 10 US 9,329,912 B2

500\ l

CREATE TASKS

\
501

y
BIND TASKS TO MULTIPLE
CORE PROCESSORS, ONE PER
CORE

\
502

y
CREATE LISTENING ENDPOINT
SOCKETS CORRESPONDING
TO TASKS

\
503

y
BIND AND LISTEN ON AN
ADDRESS COMMON TO THE
TASKS

\
l 504

FIG. 5

U.S. Patent

510

May 3, 2016

v

RESPOND TO TCP
CONNECTION ON GIVEN CORE

\
511

A

Sheet 7 of 10

LOOK-UP TO FIND SOCKET
ENDPOINT WITH CORE-LOCAL
PREFERENCE

ENDPOINT LOCATED?

ESTABLISH CONNECTION ON
ENDPOINT SOCKET

C
514
A

PASS TCP CONNECTION TO
TASK OF ANY OTHER
MATCHING SOCKET

APPLY TCP CONNECTION TO
TASK LOCAL AND BOUND TO
THE GIVEN CORE

C
l 517

\
515

MARK TCP CONNECTION AS
NO-LOCK REQUIRED

\
l 516

FIG. 5.1

US 9,329,912 B2

U.S. Patent May 3, 2016 Sheet 8 of 10

520

X\

l

RESPOND TO ARRIVAL OF
PACKETS ON CORE-SPECIFIC
TCP CONNECTION

\
521

y

INTERROGATE SOCKETS
INFORMATION TO LOCATE
SOCKET FOR LOCAL TASK

\
l 522

FIG. 5.2

US 9,329,912 B2

US 9,329,912 B2

Sheet 9 of 10

May 3, 2016

U.S. Patent

€9 ONISSIDOHd TOD0L0Hd HIHLO

N

(o]
b
©

FHANSOT1O EMOVIVLVA EINVHSANVH ¢IvOOT

|

|

|

|

|

|

| | NOILOaNNOO [N dol N dol A A

[I

|

| A A | 709

_ €c9 I 119)

|) 929 619 229 | Tyl

| | oNranyH ¢aNNOA CHOLYIN 213008 _ _ _

| aouva < NOILOINNOD 133008 ONIHOLYI e _ || sawoo ol ||

! HOLYI VOO N Y3HLO N | AUNIEaY |

| A 2 A _ || MO HLm |
_ aLngidLsia

| | |

_ 129 029, veo S _

| | |

| £¢SSITHOOT O NOILOINNOD T

! N \NOILOINNOD -~ A HsI1av1s3 _ _ !

| ANV HSINav.1s3 | | NoLLNaId1SIa |
|

I I 13IMOvd |

_ 629, wmmm v rmw Y 529, | | ss3uoNI !

NOILYDIddY SSTINO01 SSTMO01 _ -————x-—-

|

| OL ILYOIANI 3LVOIaNI NOILYOI1ddV %_W_/me_mn__/_/_\ ! 0L9

| aNv 3nano aNvy 3nano OL ILVOIANI _)

|| J

h 4 A4 h 4 h 4 NI
S13MOVd
009 - NOILYDINddY Y3AHTS L 209

US 9,329,912 B2

Sheet 10 of 10

May 3, 2016

U.S. Patent

L Ol
YN H

13XO0S HOVE NO FONTFHTF43dd ONISSTO0™d TvOOT-3400 JLVOIANI

A

0LL,

SS34dAV LNIOdAN3 401 FNVS NO S13IXMO0S 11V dNId

A
80.,

SS300dd JO AdvIdHL HOVE A9 L3XO0S ONINTLSIT ALVIHO

A

90/,

S3400 OL ANNOY S3SSTO00Hd HO SAVIYHL 31v3dO

A

0L,

SMOT14 J04 ALINIH4V-3H0D HLIM LINN NOILNGIFLSIA 13IMOVd SSTFHONI FHNOIANOD

A
202,

NOILVYOI1ddV d3aAd3IsS
00L -~

US 9,329,912 B2

1
CORE-AFFINE PROCESSING ON
SYMMETRIC MULTTPROCESSING SYSTEMS

BACKGROUND

Various scheduling algorithm implementations differ in
adherence to processor affinity. Under some circumstances,
an implementation can allow a task to change execution to a
different processor if deemed to be most efficient. An
example situation can involve two processor-intensive tasks,
task A and task B, which have affinity to one processor while
another processor is idle. Some scheduling algorithms shift
task B to the second processor to maximize processor use.
Task B accordingly acquires affinity with the second proces-
sor while task A continues to have affinity with the first
processor.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention relating to both structure
and method of operation may best be understood by referring
to the following description and accompanying drawings:

FIG. 1 is a schematic block diagram depicting an embodi-
ment of a SMP system that provides full affinity of a TCP
connection to a core processor.

FIG. 2, including FIG. 2.1, labeled PRIOR ART, is a sche-
matic block diagram illustrating a technique for TCP server
connection handling in an SMP system via master/worker
interactions.

FIG. 3 is a schematic block diagram that depicts an
embodiment of a system and associated operating method
which enables the capability for applications to suggest core-
affine processing for a TCP connection on an SMP system.

FIG. 4 is a schematic block diagram illustrating an embodi-
ment of a SMP system that enables full affinity of a TCP
connection to a core.

FIG. 5, including FIG. 5.1 and FIG. 5.2, shows schematic
flow charts illustrating an embodiment or embodiments of a
method for SMP using a technique that enables full affinity of
a TCP connection to a core.

FIG. 6 is a schematic block and flow diagram showing an
embodiment of an SMP system configured for an operation
flow of TCP protocol processing.

FIG. 7 is a schematic flow chart that depicts a technique for
initialization of core-affine TCP processing for SMP process-
ing.

DETAILED DESCRIPTION

Transmission Control Protocol (TCP) processing on Sym-
metric Multiple Processing (SMP) systems exhibits a perfor-
mance constraint, a failure to provide full affinity of a TCP
connection to a core when desired, even when ingress packet
distribution is configured to create core affinities. A packet
arriving on one core may be processed by an application
running on another core, essentially destroying affinity. The
behavior arises from the semantics of symmetric processing,
which retains functionality independent of the number of
cores, or on which cores an application runs. An end result of
the behavior can be non-optimal performance since sharing
resources between cores can result in the use of locks and
non-optimal use of caches.

Approaches for binding traffic flows to specific cores of a
multi-core system can enable performance improvement.
Specific methods to accomplish such affinity vary, depending

10

15

20

25

30

45

50

55

60

65

2

on the nature of the hardware, the type of software environ-
ment, the type of traffic being bound, and application behav-
ior.

For example, a stream scheduler running on one core, can
accept all flows and farm out flows to packet schedulers
running on each of the other cores. The stream scheduler can
function as a packet distribution unit that creates flow affini-
ties to cores. Then, the packets can be processed by the packet
scheduler on the cores. The stream scheduler does not address
operations after flows are accepted by a core.

The illustrative systems and techniques disclosed herein
address, once flows are assigned to a core, how to continue
processing on the same core, by bringing together the proto-
col processing and application entities which exist indepen-
dent of one another on to the same core. Conventional sys-
tems only perform assignment and do not address how to
continue processing on the same core. Disclosed system and
technique embodiments provide TCP flow affinity between
independent entities which is further addressed in the proto-
col layer and in the application layer.

Core affinity or processor affinity, which can be called
processor pinning, is a modification of a central queue sched-
uling algorithm in a symmetric multiprocessing operating
system. A task is a unit of program execution such as a process
or thread. Each task, such as a process or thread, in the queue
is tagged to indicate a preferred or associated processor. At
allocation time, the tasks are allocated to a corresponding
preferred processor in preference to other processors. Core-
affine processing includes various processing techniques that
enable or facilitate core affinity.

Core affinity exploits the condition that some remnants of
aprocess remain in a processor’s state (specifically the cache)
from the most recent execution of the process. Scheduling the
process with associated remnants in the processor’s state in
the same processor in a subsequent execution enables the
process to run more efficiently by reducing performance deg-
radation circumstances such as cache misses.

Embodiments of electronic circuits, systems, executable
logic, and associated operating methods disclosed herein
enable improvement of TCP processing throughput in many
use cases by providing full core affinity of connections
throughout the entire processing. Conventional techniques do
not enable full affinity throughout the entire processing for
SMP operating systems and applications, such as Linux.
Improved throughput can be achieved without violating sym-
metric processing semantics that commonly occur from exist-
ing applications that use the protocol stack.

Various embodiments of electronic circuits, systems,
executable logic, and associated operating methods disclosed
herein enable the capability for applications to suggest core-
affine processing for a TCP connection on an SMP system.
For connections marked for core-affine processing, the pro-
tocol processing layer attempts to perform all processing of a
particular connection on one core when possible, and falls
back to core-agnostic behavior when not possible. Various
specific techniques can be used to attain the core-affine pro-
cessing and enable applications to suggest core-affine pro-
cessing for a TCP connection on an SMP system.

The fall-back to normal processing ensures that new or
legacy SMP applications that do not use the disclosed tech-
niques for core-affine processing are not affected. For appli-
cations that do use core-affine processing, performance ben-
efits are attained by avoiding synchronization and sharing
data across cores for a connection. Legacy applications do not
benefit from performance improvement, but legacy applica-

US 9,329,912 B2

3

tions that can specifically indicate core-affine processing ben-
efit by avoiding synchronization and sharing data across
cores.

Incoming TCP connections can be distributed to various
processing nodes in a distributed system or to cores in a
multiple core system. Distribution methods can be used in
network load balancers which distribute to multiple nodes
and Ethernet controllers which distribute to multiple cores.
The techniques can use classifiers and sometimes intelligent
state information to provide affinity of connections to nodes
so that the same node or core may process a given connection.

In a multiple-core SMP system, an Ethernet controller or
an ingress packet distribution unit can distribute incoming
TCP packets to various cores of the system, and provide some
connection affinity. However, conventional connection affin-
ity does not guarantee that the protocol processing layer run-
ning on the cores would continue all the processing of packets
for a given connection on that core. The packet may be meant
for an application that is currently running on another core.
Processing in such case involves passing the packet to the
application on another core, which in turn implies cross-core
communications, sharing of resources, less efficient use of
CPU caches, and use of locks or other synchronization primi-
tives. Such operations can lower performance of the connec-
tion in terms of establishment time and throughput.

SMP specifications call for the capability to enable a server
application running on any core to be able to process an
incoming connection arriving on any of the cores. Increasing
or decreasing the number of cores, or moving applications
from core to core, should not affect the functionality of an
application in an SMP system.

Complete processing of a TCP connection can involve
three entities that function autonomously including an ingress
packet distribution unit, an application, and a TCP protocol
layer. The ingress packet distribution unit can be configured
to send packets to cores with core affinity for connections, if
desired, but generally does not have the intelligence to deter-
mine or operate on the basis of whether an application exists
that can receive the sent packets, and if such an application
does exist, whether the application is running on the same
core to which the packets of a connection are sent.

The application that receives the packet may be bound to a
specific core, or may allow a scheduler to move the applica-
tion from core to core. The application generally does not
have intelligence capability to determine or operate upon
which core an expected packet will actually arrive.

The TCP protocol layer that processes and delivers the
packet to the application does not a priori have information
about which core packets of a given connection will arrive,
and on which core a consumer application of that packet will
be running when the packet is delivered. The application,
protocol layer, and ingress packet distribution unit are
autonomous entities that have to coordinate to ensure that a
TCP connection is processed completely on a given core.

Embodiments of electronic circuits, systems, executable
logic, and associated operating methods disclosed herein
attain performance benefits by enabling an application that
runs on one or more cores to accept and process TCP connec-
tions locally on each core at which packets arrive, given that
packets for any given connection always arrive at the same
core. Performance benefits arise from avoiding cross-core
sharing and resulting degradations.

Embodiments disclosed herein include a technique for
avoiding cross-core communications, data sharing, and syn-
chronization, enabling a given TCP connection to be pro-
cessed fully locally on one core while preserving symmetric
processing requirements.

10

15

20

25

30

35

40

45

50

55

60

65

4

Referring to FIG. 1, a schematic block diagram depicts an
embodiment of a SMP system 100 that provides full affinity
of'a TCP connection to a core processor 102 when desired,
when ingress packet distribution is configured to create core
affinities. In the illustrative embodiment, the SMP system 100
can include a server application 104 that is configured to
create a plurality of tasks 106 and bind the plurality of tasks
106 to a plurality of core processors 102. Each individual task
106 of the application is affine to one core processor 102. One
or more of plurality of tasks 106 is configured to create a
corresponding listening endpoint socket 108, bind and listen
on the same TCP endpoint address and an associated protocol
address and port address, that is common to the plurality of
tasks 106. Each applicable task 106, whether a thread or
process, is bound to one processor core 102 on a one-to-one
basis and creates one corresponding listening socket. All
tasks 106 do bind and listen to the same TCP protocol end-
point address.

A socket, for example a network socket, is an endpoint of
an inter-process communication flow across a network. Com-
monly, communication among computers or other devices
with computing and communication capability is based on
the Internet Protocol (IP) so that most network sockets are IP
sockets. A socket connection can be characterized by a unique
combination of a local socket address (a local IP address and
port number), a remote socket address (for established TCP
sockets), and a protocol (transport protocol such as TCP, User
Datagram Protocol (UDP), raw IP, and the like). The operat-
ing system and application which creates the socket identify
the socket by a unique identifying number called a socket
identifier or socket number. The operating system forwards
the payload of incoming IP packets to the corresponding
application by extracting the socket address information from
the IP and transport protocol headers and stripping the head-
ers from the application data.

In some embodiments and/or applications of the SMP sys-
tem 100, the plurality of tasks 106, which are affine or con-
nected to processor cores 102, are configured to generate an
indication to a stack 112 such as a Transmission Control
Protocol/Internet Protocol (TCP/IP) stack 112 on the plural-
ity of endpoint sockets 108 respective to the plurality of tasks
106. The indication specifies that a listened-to endpoint
socket 114 preferably accepts endpoint connections arriving
on the same core processor 102 as that of the corresponding
task 106.

TCP/IP stacks 112 are widely used on SMP systems. The
illustrative method for core-affine TCP processing on SMP
systems 100 facilitate better throughput for benchmarks and
applications.

In further embodiments and/or applications of the SMP
system 100, the server application 104 can be configured such
that the indication is recorded by the TCP/IP stack 112, for
example, by marking an endpoint socket 108 respective to a
task of the plurality of tasks 106 to indicate a local core
preference. The TCP/IP stack 112 stores core-identifier infor-
mation within the endpoint socket 108 and/or stores the end-
point socket 108 in a core-local data structure that is specific
to the respective core processor 102.

Particular embodiments of the SMP system 100 can further
include a protocol layer 116 which is configured to respond to
an ingress TCP connection 114 on a predetermined core
processor 102.1 of the plurality of core processors 102 by
performing a look-up of core-local information 118 to locate
a listening endpoint socket 108.1 that corresponds to a task
106 which is local to the predetermined core processor 102.1
with a core-preference for handling the TCP connection 114
using the listening endpoint socket 108.1. The TCP connec-

US 9,329,912 B2

5

tion 114, if located, is established on the located listening
endpoint socket 108.1, applied to the task local and bound to
the predetermined core processor 102.1 without sharing data
structures between cores or using locks, and is marked as
no-lock required. In contrast, the TCP connection 114, if a
local listening task is not located, is passed to any available
task of a matching socket with semantics preserved.

The TCP connection 114, when located, applies subse-
quent packets 120 of that TCP connection 114 arriving on the
located TCP connection 114 on the predetermined core pro-
cessor 102.1 to the task local and bound to the predetermined
core processor 102.1 and processed lock-free.

Further particular embodiments of the SMP system 100
can also include a protocol layer 116 which is configured to
respond to arrival of a plurality of packets 120 of an incoming
TCP connection 114 on a predetermined core processor 102.1
of'the plurality of core processors 102 by interrogating sock-
ets information to locate an endpoint socket 108 correspond-
ing to a task local to the predetermined core processor 102.1
with a core preference for handling the TCP connection 114
using the listening endpoint socket 108.

Embodiments of the illustrative SMP system 100 can fur-
ther include a TCP/IP stack 112 that is configured to interro-
gate sockets information to find a matching socket with an
indicated local core preference and establish a connection on
the predetermined core processor 102.1 and pass the estab-
lished connection 114.1 to an application task that executes
on the predetermined core processor 102.1. The established
connection 114.1 is marked as lockless.

Various embodiments of the SMP system 100 can be
formed such that the protocol layer 116 is configured wherein
connection establishment and passing of the established con-
nection 114.1 to a locally-bound server process 132.1 are
attained without sharing data structures across core proces-
sors 102 and without cross-core data sharing and locks.

Further example embodiments of the SMP system 100 can
be formed such that the protocol layer 116 is configured in
absence of a task local to the predetermined core processor
102.1 with an indicated core preference to select any other
task, either thread or process, that is waiting for the TCP
connection 114 by locating a matching endpoint socket 108
on another core processor 102 or an endpoint socket 108 that
does not have the core-preference indicated on the endpoint
socket.

Other embodiments and/or applications of the SMP system
100 can further include a classifier 128 configured to send
initial and subsequent incoming packets 120.1 for the TCP/IP
connection 114 to the predetermined core processor 102.1
wherein atask 106 on the predetermined core processor 102.1
holds the TCP/IP connection 114 and the subsequent packets
120.1 are processed on the predetermined core processor
102.1 without cross-core communications and sharing of
data. Sending the initial and subsequent incoming packets
120.1 for the TCP/IP connection 114 to the predetermined
core processor 102.1 helps to establish the connection in a
lockless manner. The method applies to all packets of the
connection both initial and subsequent. The classifier 128
gives connection affinity on ingress packets to core proces-
sors 102. The TCP/IP connection 114 is identified for lockless
processing by a protocol stack 112 by marking of a lockless
attribute.

Some embodiments of the SMP system 100 can further
include a protocol layer 116 which is configured to process
egress packets 120.2 passing from a server 132 to aclient 134
and ingress packets 120.3 passing from the client 134 to the
server 132 without cross-core data sharing and locks wherein
egress packets 120.2 originating from the server 132 are

20

25

35

40

45

55

6

bound to a predetermined core processor 102.1 of the plural-
ity of core processors 102 at which ingress packets 120.3 of a
TCP connection 114 also arrive. The ingress packets 120.3
and the egress packets 120.2 are processed on the same pre-
determined core processor 102.1. Server functionality can be
implemented by a process or thread.

In particular embodiments of the SMP system 100, the
protocol layer 116 can use a lockless attribute marked on the
TCP connection 114 to specify that locks are not required
when processing the TCP connection 114.

In operation, a multi-tasked or multi-threaded server appli-
cation 104 accepts connections 114 on all the cores 102 of the
SMP system 100, with each task 106 bound to a core 102. The
tasks 106 can be either separate threads or processes. Each
task 106 creates a listening endpoint socket 108 and listens to
the same protocol address as all the other tasks 106. The task
106 also indicates to the protocol layer 116 a preference to
accept, on that socket 108, connections that are local to the
core, such as packets 120 that arrive on the core 102. The
protocol layer 116 is enhanced to support this concurrent
listening and preference indications on sockets 108.

An ingress packet handling unit, for example an Ethernet
controller 136, can be programmed to distribute incoming
packets 120 to individual cores 102, such as using a 5-tuple
hash distribution, essentially supplying flow affinity. This
ensures that a flow always lands on the same core 102. An
Ethernet controller is one example of an ingress packet pro-
cessing unit. Other ingress packet processing units can also be
used.

The protocol processing layer 116, on receiving ingress
TCP connection packets 120 on a core 102, looks up core-
local socket data structures in the protocol layer 116 to deter-
mine whether a local task’s socket is marked as interested in
processing the connection 114. If so the connection 114,
which is established on the local core 102, is given to the
socket’s task that is also bound to the local core 102. The
connection 114 is marked as lockless. If no matching socket
is found, the protocol processing layer 116 passes the con-
nection to any available matching socket’s task in essentially
a fall back behavior, ensuring that applications that are not
aware of the proposed core-local socket processing feature
are not affected.

Once the connection is assigned to a local task, all further
ingress packets on the flow arrive on the same core 102 and
are also sent to the same socket 108 and task 106 on the core
102.

Referring to FIG. 2, labeled PRIOR ART, a schematic
block diagram illustrates a technique for TCP server connec-
tion handling in an SMP system 200 via master/worker inter-
actions. An application 202 operating in a user space 204
executes a master task 206 and one or more worker tasks 208
with connection assignments 210 made by the master task
206 to the worker tasks 208. In a kernel space 212, anew TCP
connection 214 is made between an Ethernet driver 216 and
the master task 206 through a network socket 218 in a TCP/IP
stack 220. The connection assignments 210 establish
assigned TCP connections 222 through the TCP/IP stack 220.

The Internet protocol suite (TCP/IP) is the set of commu-
nication protocols used for the Internet and similar networks
and is a common protocol stack for wide area networks.
TCP/IP specifies end-to-end connectivity including data for-
matting, addressing, transmission, routing, and receipt at a
destination. TCP/IP has four abstraction layers, each with
defined protocols, including: (1) a link layer (Ethernet) con-
taining communication technologies for a local network, (2)
an internet layer (IP) connecting local networks and thus
establishing internetworking, (3) a transport layer (TCP) han-

US 9,329,912 B2

7

dling host-to-host communication, and (4) an application
layer such as Hypertext Transport Protocol (HTTP) which
contains protocols for specific data communications services
on a process-to-process level (for example, web browser
communications with a web server).

Servers are typically processes that supply application ser-
vices and create sockets that are in a listening state. The
sockets wait for initiatives from a client program. A TCP
server may serve multiple clients concurrently by creating a
child process for each client and establishing a TCP connec-
tion between the child process and the client. Unique dedi-
cated sockets are created for each connection, forming an
established connection as a socket-to-socket virtual connec-
tion or virtual circuit (for example a TCP session) with a
remote socket for communicating a bidirectional or duplex
data stream.

The master task 206 performs several operations including
listening and accepting connections from clients. The master
task 206 uses the network socket 218 or equivalent construct,
and farms out established connections 222 to worker tasks
208, either threads or processes.

The worker tasks 208 perform application processing on a
connection. The worker tasks 208 may be part of a worker
pool, or can be created on demand. The worker tasks 208 are
assigned connections 210 by the master task 206. The worker
tasks 208 may be bound to specific cores, or free to run on any
core.

Using the master/worker scheme for TCP server connec-
tion handling, connections are established wherein packets
may arrive on any core and processed on the one core where
the master currently runs. The master then assigns the con-
nection to one of the workers using some scheduling algo-
rithm. Subsequent packets of the connection are processed by
the worker. Since workers may run on any core at any time,
and the master does not know on which core that packets for
a connection might arrive, data sharing, cache contention and
locking can be required since packets need to be moved from
the arriving core to the core where the worker currently runs.

In another example master/worker concurrent process
model, shown in FIG. 2.1 labeled PRIOR ART, a master
process 206 can create a socket 218 and spawn N processes,
shown as worker tasks 208. All processes 208 share the same
socket. All processes 208 accept connections on the shared
socket 218, for example by creating a queue on the shared
socket 218 for waiting processes. The TCP/IP stack 220
assigns a new connection to the first waiting process in the
queue, resulting in round-robin assignment. A process com-
pletes and returns to a waiting state while awaiting a new
connection. For example, the completed process can enter at
the tail of the queue.

The master/worker concurrent process model has several
drawbacks. Sharing of sockets and queues across cores leads
to a requirement for cross-core data access, synchronization
and locks. Round-robin scheduling from the queue eliminates
local-core affinity.

The master/worker concurrent process model is directed
toward assignment of connections or flows to resources such
as the processor (central processing unit) and memory, and
monitoring of resulting performance or load. The model re-
balances the connections or flows based on the monitoring.
The model does not address how an assignment of connec-
tions or flows, once selected, can actually be made core-affine
within the protocol processing, scheduler, and application
layers on a symmetric multiprocessing (SMP) system.

In contrast to the master/worker concurrent process model,
embodiments of a system and associated operating method
enable the capability for applications to perform core-affine

10

15

20

25

30

35

40

45

50

55

60

65

8

processing for a TCP connection on an SMP system by cre-
ating and executing multiple server tasks, such as processes or
threads. To enable any core to accept connections, multiple
tasks of a server application are bound to the cores, one per
core. All tasks create a socket each, and bind and listen on the
same TCP/IP endpoint address to accept connections. A spe-
cial indication is provided by these tasks to the TCP/IP stack
on respective sockets, stating that the connection endpoint
that is subject to listening should preferably accept connec-
tions arriving on the same core.

The special indication is recorded by the TCP/IP stack by
marking the respective socket as having the property of local
core preference. The stack may store the core-identifier infor-
mation ofthe process within the socket and/or store the socket
in a core-local data structure that is specific to the particular
associated core.

Accordingly, referring to FIG. 3, a schematic block dia-
gram depicts an embodiment of a system and associated
operating method which enables the capability for applica-
tions to perform core-affine processing for a TCP connection
on an SMP system. The disclosed method implements TCP
connection affinity to cores throughout the complete protocol
processing on an SMP system, and also can make the pro-
cessing lockless. The method does not affect the functionality
of'legacy (existing) applications. The illustrative system and
method describe a particular method of how an assignment
can be actually implemented in an SMP system. The illustra-
tive system 300 enables concurrent listening servers 306. An
application 302 operating in a user space 304 runs one or
more servers 306. In a kernel space 312, established assigned
TCP connections 314 are made between an Ethernet driver
316 and the servers 306 through network sockets 318 in a
TCP/IP stack 320.

The concurrent listening servers 306 operate wherein each
thread (server 306) listens on the same TCP endpoint address
using separate sockets 318. Servers 306 are bound to proces-
sor cores. The servers 306 indicate core-local connection
scheduling preference for corresponding sockets 318.

Embodiments of the system and associated operating
method can further use an ingress packet classifier. Ingress
TCP packets arriving on the multiple-core processor are sent
to different cores by a control unit or device, based on the
ingress packet classifier. An Ethernet controller or driver can
be used to configure the ingress packet classifier. An Ethernet
controller is an ingress packet processing unit that is separate
from the core processor and is the first entity to receive
packets from the network. An Ethernet driver can execute on
the cores processors and operate as part of the protocol pro-
cessing layer. The classifier may use a distribution element,
such as a hash distribution on a 5-tuple or other distribution
techniques. As a result, affinity is created for a given TCP
connection to one of the cores, and supply core distribution.
The classifier can distribute packets to cores based on some
method such as a 5-tuple hash, thus creating flow affinities to
cores.

Thus, in connection processing, a classifier in the Ethernet
driver 316 (or an Ethernet controller) provides connection
affinity to cores. The Ethernet driver 316 shown in kernel
space can correspond to an Ethernet controller. The stack 320
establishes the TCP connection via SYN, SYN-ACK, and
ACK signals on the same core without cross-core data sharing
and locks or without sharing data structures with other cores,
since all packets for that connection will arrive on the same
core by virtue of the classifier and the presence of a local
listener is guaranteed. The stack 320 passes the connection on
to the local listening server 306 after marking the connection
as lock-free. Subsequent packets of the connection also arrive

US 9,329,912 B2

9

atthe associated core and are sent to the same listening server,
lock-free. Outgoing packets are also processed lock-free.

Embodiments of the system and associated operating
method can further address subsequent packets on a connec-
tion. All subsequent incoming packets for a connection are
sent to the same core by the classifier. With the connection
also being held by a task on the same core, the subsequent
incoming packets can be also processed on the same core
without requiring cross-core communications or sharing. The
connections are identified for lockless processing by the pro-
tocol stack by virtue of having a lockless attribute marked on
the connections.

An element such as a TCP/IP stack can perform connection
establishment. When packets of an incoming TCP connection
arrives on a core, the TCP/IP stack can establish the connec-
tion on that core using a SYN, SYN-ACK, ACK three-way
hand shake, and passes the connection to an application task
that is waiting on the same core. The connection can be
established by interrogating sockets information to find a
matching socket that has the indicated local core preference.
The connection thus passed is also marked as lockless.

The TCP connection s established using a three-way hand-
shake. Before a client attempts to connect with a server, the
server first binds to a port for opening to connections in a
listen operation. Once the listen is established, a client may
initiate a connection. To establish a connection, the three-way
or step handshake occurs including a SYN signal sent from
the client to the server that sets a segment sequent number, a
SYN-ACK signal with which the server replies to the client
with an acknowledgement number and the sequence number
set by the server for the packet, and an ACK signal by which
the client sends acknowledgement to the server.

In contrast to conventional TCP connection, system and
technique embodiments disclosed herein enable a connection
establishment procedure that facilitates assurance that con-
nection establishment processing can be performed without
sharing data structures across cores and thus without cross-
core data sharing and locks.

If a locally waiting task is not found, then the operation
falls back to choosing any task that is waiting for the connec-
tion, by finding a matching socket on another core, or a socket
that does not have the indicated core-local preference.

Embodiments of the system and associated operating
method can further handle egress packets. Packets originating
from the server and passing out to the client are also processed
without cross-core data sharing and locks, a condition which
is enabled because the packets originate from the server
which runs bound to the same core where ingress packets also
arrive. Thus both ingress and egress packets can be always
processed on the same core. The lockless attribute marked on
the connection informs the protocol processing layer that
locks are not required when processing the connection.

Embodiments of the system and associated operating
method can also preserve symmetric processing semantics.
The indication on a socket for core-local processing is dis-
cretionary (not mandatory), and if no matching socket with
the core-local attribute is found on a core for an incoming
connection, the protocol processing layer falls back to the
behavior of finding any socket on the system that matches the
incoming connection. Thus legacy (existing) applications
that do not make use of the feature are not affected and may be
scheduled on any core when accepting and processing TCP
connections. Configuring the ingress packet distribution unit
to generate connection affinity to cores also does not prevent
legacy applications from accepting and processing the con-
nections from any core.

10

15

20

25

30

40

45

50

55

60

65

10

Accordingly, the system and technique enabling concur-
rent listening servers 306 preserves existing semantics. If no
local listener is found, the stack 320 locates a listening server
306 on another core, or locates a generic listener, defined as a
listener that is not marked with core-local preference. For a
generic listener, round-robin selection or other suitable
scheduling can be used. The connection is assigned to the
selected server 306.

Referring to FIG. 4, a schematic block diagram illustrates
an embodiment of a SMP system 400 that enables full affinity
of a TCP connection 414 to a core 402. The illustrative SMP
system 400 can include a protocol layer 416 configured to
respond to arrival of a plurality of packets 420 of an incoming
TCP connection 414 on a predetermined core processor 402.1
of'a plurality of core processors 402 by interrogating sockets
information to locate an endpoint socket 408 corresponding
to a task 406 which is local to the predetermined core proces-
sor 402.1.

Some embodiments and/or applications or the SMP system
400 can further include a Transmission Control Protocol/
Internet Protocol (TCP/IP) stack 412 which is configured to
interrogate sockets information to find a matching socket with
an indicated local core preference and establish a connection
onthe predetermined core processor 402.1 and pass the estab-
lished connection to an application task 406 that executes on
the predetermined core processor 402.1. The established con-
nection 414 is marked as lockless.

In various embodiments of the SMP system 400, the pro-
tocol layer 416 can be configured such that connection estab-
lishment and passing of the established connection 414 to a
locally-bound server process 424 are attained without sharing
data structures across core processors 402 and without cross-
core data sharing and locks.

In further embodiments and/or applications of the SMP
system 400, the protocol layer 416 can be configured in
absence ofa task 406 which is local to the predetermined core
processor 402.1 with an indicated core preference to select
any other task 406 that is waiting for the TCP connection 414
by locating an endpoint socket 408 corresponding to a task
406 which is local to any other core processor 402 or an
endpoint socket 408 that does not have the core-preference
indicated on the endpoint socket.

Other embodiments and/or applications of the SMP system
400 can further include a classifier 428 configured to send
initial and subsequent incoming packets 420 for the TCP/IP
connection 414 to the predetermined core processor 402.1
wherein a task 406 on the predetermined core processor 402.1
holds the TCP/IP connection 414 and the subsequent packets
420 are processed on the predetermined core processor 402
without cross-core communications and sharing of data. The
TCP/IP connection 414 is identified for lockless processing
by a protocol stack 412 by marking of a lockless attribute.

Referring to FIG. 5, including FIG. 5.1 and FIG. 5.2, sche-
matic flow charts showing an embodiment or embodiments of
a method 500 for SMP using a technique that enables full
affinity of a TCP connection to a core. An illustrative embodi-
ment of a method 500 for SMP can include creating 501 a
plurality of tasks, and binding 502 the plurality of tasks to a
plurality of core processors. A listening endpoint socket cor-
responding to the plurality of tasks can be created 503 on a
one-to-one basis. The method 500 can further include binding
and listening 504 on a protocol address common to the plu-
rality of tasks.

Some embodiments of a method 510 for SMP can further
include responding 511 to an ingress TCP connection on a
predetermined core processor of the plurality of core proces-
sors. Responding 511 to an ingress TCP connection on the

US 9,329,912 B2

11

predetermined core processor can include performing 512
look-up of core-local information to locate a listening end-
point socket corresponding to a task local to the predeter-
mined core processor with a core-preference for handling the
TCP connection using the listening endpoint socket.

Ifthe listening endpoint is located 513, the TCP connection
on the located listening endpoint socket can be established
514, the TCP connection can be applied 515 to the task local
and bound to the predetermined core processor, and the TCP
connection can be marked 516 as no-lock required.

If the listening endpoint is not located 513, the TCP con-
nection can be passed 517 to any available task of a matching
socket with semantics preserved.

Various embodiments of a method 520 for SMP can further
include responding 521 to arrival of a plurality of packets of
an incoming TCP connection on a predetermined core pro-
cessor of the plurality of core processors. Responding 521 to
arrival of the plurality of packets of the incoming TCP con-
nection on the predetermined core processor can include
interrogating 522 sockets information to locate an endpoint
socket corresponding to a task local to the predetermined core
processor with an indicated core preference.

Referring to FIG. 6, a schematic block and flow diagram
shows an embodiment of an SMP system 600 configured for
anoperation flow of TCP protocol processing. The illustrative
SMP system 600 includes a server application 602, an ingress
packet distribution unit 604, and a protocol layer 606. The
server application 602 creates multiple tasks and binds the
created tasks to individual cores of the SMP system 600. The
individual tasks create a listening endpoint or socket and
listens to the same endpoint protocol address as all other
tasks. A task also indicates to the protocol layer 606 a pref-
erence to accept connections that are local to the core, for
example packets that arrive on the core.

The ingress packet distribution unit 604 which can be, for
example, an Ethernet controller or driver, is configured to
distribute incoming packets to individual cores, enabling TCP
connection affinity to cores. Various techniques can be used to
distribute the packets. For example, a hash technique such as
a 5-tuple hash can be used to distribute the packets.

The protocol layer 606, upon receiving an ingress TCP
connection on a core looks up core-local information to locate
the socket of a local task that can suitably handle the connec-
tion. If found, the connection is established on that socket and
given to the task bound to the core. The connection is marked
as no-lock required. All further packets also arrive on the core
and are given to the same task and processed lock-free. If no
matching local task’s socket is found, the connection is
passed to any available matching socket’s task, preserving
existing SMP semantics.

Analysis of the operating flow of TCP protocol processing
can be described beginning with the receipt of packets 610 at
the ingress packet distribution unit 604 which distributes 611
the packets with flow affinity to the cores.

If the destination of the packets is not local 612, the opera-
tion flow proceeds to other protocol processing 613. If the
destination is local 612, protocol processing 606 determines
whether the packets are to be processed using TCP protocol
processing 615. If not destined for TCP protocol processing
615, the operation flow proceeds to other protocol processing
613. If subject to TCP protocol processing 615, protocol
processing 606 determines whether signals indicate a TCP
handshake 616. If the signals do not indicate a TCP hand-
shake 616, protocol processing 606 determines whether the
signals indicate a TCP data acknowledge 617. If signals do
not indicate a TCP data acknowledge 617, protocol process-
ing 606 closes the connection 618.

10

20

30

40

45

50

12

Ifthe signals indicate a TCP handshake 616, protocol pro-
cessing 606 determines whether a match occurs 619 for a
local core-affine socket. If a local core-affine socket match
occurs 619, protocol processing 606 establishes the connec-
tion without cross-core data sharing or locks and marks the
connection as lockless 620. Protocol processing 606 then
indicates 621 to the application on the same core (again
without cross-core data sharing) that the lockless connection
is available. The server application 602 picks up the connec-
tion without using locks and continues its processing. The
protocol processing layer and the application are autonomous
entities. The protocol layer establishes the connection and
then indicates the connection to the application. The applica-
tion then picks up the connection. Since operations are per-
formed on the same core, no cross-core sharing and locking
are required. If no local core-affine socket match occurs 619,
protocol processing 606 determines whether any other
matching socket is present 622. If no other matching socket is
present 622, protocol processing 606 proceeds to error han-
dling 623. If other matching socket is present 622, protocol
processing 606 establishes 624 a connection, then indicates
625 to the application that the connection is established. The
application 602 picks up the connection and proceeds with
processing.

If signals indicate a TCP data or acknowledgement 617,
protocol processing 606 determines whether a matching con-
nection is found 626. If a matching connection is not found
626, protocol processing 606 proceeds to error handling 623.
It a matching connection is not found 626, protocol process-
ing 606 determines whether the connection is marked lock-
less 627. If the connection is marked lockless 627, protocol
processing 606 queues the data to the application without
cross-core data sharing or locks 628 and indicates to the
application that data is available. The application 602 then
proceeds to retrieve the data without cross-core data sharing
or locks. If the connection is not marked lockless 627, proto-
col processing 606 queues the data which is shared across
cores 629 and indicates to the application that data is avail-
able. The server application 602 then proceeds to retrieve and
process the data, which can involve cross-core sharing and
locks.

Referring to FIG. 7, a schematic flow chart depicts a tech-
nique for initialization of core-affine TCP processing for
SMP processing. An embodiment of an initialization method
700 can be executed in a server application 702. An ingress
packet distribution unit can be configured 704 with core affin-
ity for flows. Tasks are created 706 and bound to the cores. A
listening socket can be created 708 by each task or process.
All sockets can be bound 710 on the same TCP endpoint
address. A core-local processing preference can be indicated
712 on each socket.

Embodiments and/or applications of the illustrative
method can improve throughput and efficiency to varying
degrees. For example, analysis of TCP stack processing on a
Linux implementation suggests a performance benefit of 10%
to 20% in throughput for a TCP connection through avoid-
ance of locks and synchronization. More or less improvement
can occur for various implementations and applications.

Embodiments of electronic circuits, systems, executable
logic, and associated operating methods can use any socket
type that handles information flows, and is not exclusive to
TCP. For example, User Datagram Protocol (UDP) sockets
can also be processed in a similar manner, enabling a UDP
stream to be processed on one core.

The disclosed systems, methods, and components can also
be used in various systems for core-affine processing, SMP,
TCP core affinity, TCP session affinity, UDP affinity, network

US 9,329,912 B2

13

support in multicore processing systems for networking and
communication equipment, Internet protocol (IP) stacks, and
the like.

When load distribution is adequately balanced across the
cores, TCP connection rates and TCP throughput can be
improved as locking and cache contention are avoided or
minimized.

The disclosed embodiments of electronic circuits, systems,
executable logic, and associated operating methods, by
enabling core-affine TCP processing throughout the informa-
tion pathway to the application, inter-core communications
and synchronization requirements are avoided when process-
ing TCP connections on SMP systems. The technique also
enables freedom from eftfects to legacy applications that are
not specifically configured to handle such core-affine pro-
cessing.

Terms “substantially”, “essentially”, or “approximately”,
that may be used herein, relate to an industry-accepted vari-
ability to the corresponding term. Such an industry-accepted
variability ranges from less than one percent to twenty per-
cent and corresponds to, but is not limited to, components,
systems, structures, topology, materials, shapes, sizes, func-
tionality, values, process variations, and the like. The term
“coupled”, as may be used herein, includes direct coupling
and indirect coupling via another component or element
where, for indirect coupling, the intervening component or
element does not modify the operation. Inferred coupling, for
example where one element is coupled to another element by
inference, includes direct and indirect coupling between two
elements in the same manner as “coupled”.

While the principles of the disclosed system are described
above in connection with specific apparatus, it is to be clearly
understood that this description is made only by way of
example and not as a limitation on scope of the appended
claims.

The illustrative pictorial diagrams depict structures and
process actions in a communication process. Although the
particular examples illustrate specific structures and process
acts, many alternative implementations are possible and com-
monly made by simple design choice. Actions may be
executed in different order from the specific description
herein, based on considerations of function, purpose, con-
formance to standard, legacy structure, and the like.

An embodiment of a symmetric multi-processing (SMP)
system includes a server application configured to create a
plurality of tasks and bind the plurality of tasks to a plurality
of core processors, the plurality of tasks configured to create
a corresponding listening endpoint socket, and bind and listen
on a protocol address common to the plurality of tasks.
According to a further embodiment, the SMP system also can
be configured such that the plurality of tasks are configured to
generate an indication to a stack on the plurality of endpoint
sockets respective to the plurality of tasks, the indication
specifying that a listened-to endpoint socket accepts endpoint
connections arriving on a same core processor. According to
afurther embodiment, the SMP system also can be configured
such that the server application is configured so that the
indication is recorded by a Transmission Control Protocol/
Internet Protocol (TCP/IP) stack including marking an end-
point socket respective to a task of the plurality of tasks
indicative of a local core preference, the TCP/IP stack storing
core-identifier information within the endpoint socket and
storing the endpoint socket in a core-local data structure
specific to the respective core processor. According to a fur-
ther embodiment, the SMP system further includes a protocol
layer configured to respond to an ingress Transmission Con-
trol Protocol (TCP) connection on a predetermined core pro-

10

15

20

25

30

35

40

45

50

55

60

65

14

cessor of the plurality of core processors by performing look-
up of core-local information to locate a listening endpoint
socket corresponding to a task local to the predetermined core
processor with a core-preference for handling the TCP con-
nection using the listening endpoint socket, such that the TCP
connection, if located, being established on the located lis-
tening endpoint socket, applied to the task local and bound to
the predetermined core processor without sharing data struc-
tures between cores or using locks, and marked as no-lock
required, and the TCP connection, if not located, being passed
to any available task of a matching socket with semantics
preserved. According to a further embodiment, the SMP sys-
tem also can be configured such that the located TCP connec-
tion applies subsequent packets arriving on the located TCP
connection on the predetermined core processor to the task
local and bound to the predetermined core processor and
processed lock-free. According to a further embodiment, the
SMP system further includes a protocol layer configured to
respond to arrival of a plurality of packets of an incoming
Transmission Control Protocol (TCP) connection on a prede-
termined core processor of the plurality of core processors by
interrogating sockets information to locate an endpoint
socket corresponding to a task local to the predetermined core
processor with a core preference for handling the TCP con-
nection using the listening endpoint socket. According to a
further embodiment, the SMP system further includes a
Transmission Control Protocol/Internet Protocol (TCP/IP)
stack configured to interrogate sockets information to find a
matching socket with an indicated local core preference and
establish a connection on the predetermined core processor
and pass the established connection to an application task that
executes on the predetermined core processor, the established
connection being marked as lockless. According to a further
embodiment, the SMP system also can be configured such
that the protocol layer is configured such that connection
establishment and passing of the established connection to a
locally-bound server process are attained without sharing
data structures across core processors and without cross-core
data sharing and locks. According to a further embodiment,
the SMP system also can be configured such that the protocol
layer is configured in absence of a task local to the predeter-
mined core processor with an indicated core preference to
select any task that is waiting for the TCP connection by
locating a matching endpoint socket on another core proces-
sor or an endpoint socket that does not have core-preference
indicated on the endpoint socket. According to a further
embodiment, the SMP system further includes a classifier
configured to send initial and subsequent incoming packets
for the TCP/IP connection to the predetermined core proces-
sor such that a task on the predetermined core processor holds
the TCP/IP connection and the subsequent packets are pro-
cessed on the predetermined core processor without cross-
core communications, the TCP/IP connection identified for
lockless processing by a protocol stack by marking of a lock-
less attribute. According to a further embodiment, the SMP
system further includes a protocol layer configured to process
egress packets passing from a server to a client and ingress
packets passing from the client to the server without cross-
core data sharing and locks such that egress packets originat-
ing from the server are bound to a predetermined core pro-
cessor of the plurality of core processors at which ingress
packets of a Transmission Control Protocol (TCP) connection
also arrive, and the ingress packets and the egress packets are
processed on the same predetermined core processor.
According to a further embodiment, the SMP system also can
be configured such that the protocol layer uses a lockless

US 9,329,912 B2

15

attribute marked on the TCP connection to specify that locks
are not required when processing the TCP connection.

An embodiment of a symmetric multi-processing (SMP)
system includes a protocol layer configured to respond to
arrival of a plurality of packets of an incoming Transmission
Control Protocol (TCP) connection on a predetermined core
processor of a plurality of core processors by interrogating
sockets information to locate an endpoint socket correspond-
ing to a task local to the predetermined core processor.
According to a further embodiment, the SMP system further
includes a Transmission Control Protocol/Internet Protocol
(TCP/1P) stack configured to interrogate sockets information
to find a matching socket with an indicated local core prefer-
ence and establish a connection on the predetermined core
processor and pass the established connection to an applica-
tion task that executes on the predetermined core processor,
the established connection being marked as lockless. Accord-
ing to a further embodiment, the SMP system also can be
configured such that the protocol layer is configured such that
connection establishment and passing of the established con-
nection to a locally-bound server process are attained without
sharing data structures across core processors and without
cross-core data sharing and locks. According to a further
embodiment, the SMP system also can be configured such
that the protocol layer is configured in absence of a task local
to the predetermined core processor with an indicated core
preference to select any task that is waiting for the TCP
connection by locating a matching endpoint socket on
another core processor or an endpoint socket that does not
have core-preference indicated on the endpoint socket.
According to a further embodiment, the SMP system further
includes a classifier configured to send initial and subsequent
incoming packets for the TCP/IP connection to the predeter-
mined core processor such that a task on the predetermined
core processor holds the TCP/IP connection and the subse-
quent packets are processed on the predetermined core pro-
cessor without cross-core communications, the TCP/IP con-
nection identified for lockless processing by a protocol stack
by marking of a lockless attribute.

An embodiment of a method for symmetric multi-process-
ing (SMP) system includes creating a plurality of tasks, bind-
ing the plurality of tasks to a plurality of core processors,
creating a listening endpoint socket corresponding to the
plurality of tasks, and binding and listening on a protocol
address common to the plurality of tasks. According to a
further embodiment, the method for SMP system further
includes responding to an ingress Transmission Control Pro-
tocol (TCP) connection on a predetermined core processor of
the plurality of core processors including performing look-up
of core-local information to locate a listening endpoint socket
corresponding to a task local to the predetermined core pro-
cessor with a core-preference for handling the TCP connec-
tion using the listening endpoint socket, if the listening end-
point is located, establishing the TCP connection on the
located listening endpoint socket, applying the TCP connec-
tion to the task local and bound to the predetermined core
processor, and marking the TCP connection as no-lock
required, and if the listening endpoint is not located, passing
the TCP connection to any available task of a matching socket
with semantics preserved. According to a further embodi-
ment, the method for SMP system further includes respond-
ing to arrival of a plurality of packets of an incoming Trans-
mission Control Protocol (TCP) connection on a
predetermined core processor of the plurality of core proces-
sors including interrogating sockets information to locate an
endpoint socket corresponding to a task local to the predeter-
mined core processor with an indicated core preference.

10

15

20

25

30

35

40

45

50

55

60

65

16

While the present disclosure describes various embodi-
ments, these embodiments are to be understood as illustrative
and do not limit the claim scope. Many variations, modifica-
tions, additions and improvements of the described embodi-
ments are possible. For example, those having ordinary skill
in the art will readily implement the steps necessary to pro-
vide the structures and methods disclosed herein, and will
understand that the process parameters, components, con-
figurations, and topologies are given by way of example only.
The parameters, components, configurations, and topologies
can be varied to achieve the desired structure as well as
modifications, which are within the scope of the claims.
Variations and modifications of the embodiments disclosed
herein may also be made while remaining within the scope of
the following claims.
What is claimed is:
1. A symmetric multi-processing (SMP) system compris-
ing:
a server application configured to create a plurality of tasks
and bind the plurality of tasks to a plurality of core
processors, the plurality of tasks configured to create a
corresponding listening endpoint socket, and bind and
listen on a protocol address common to the plurality of
tasks; and
a protocol processor configured to respond to an ingress
Transmission Control Protocol (TCP) connection on a
predetermined core processor of the plurality of core
processors by performing look-up of core-local infor-
mation to locate a listening endpoint socket correspond-
ing to a task local to the predetermined core processor
with a core-preference for handling the TCP connection
using the listening endpoint socket,
when the listening endpoint is located, establishing the
TCP connection on the located listening endpoint
socket, applying the TCP connection to the task local
and bound to the predetermined core processor, and
marking the TCP connection as no-lock required, and

when the listening endpoint is not located, passing the
TCP connection to any available task of a matching
socket with semantics preserved.

2. The SMP system according to claim 1 wherein:

the plurality of tasks are configured to generate an indica-
tion to a stack on the plurality of endpoint sockets
respective to the plurality of tasks, the indication speci-
fying that a listened-to endpoint socket accepts endpoint
connections arriving on a same core processor.

3. The SMP system according to claim 2 wherein:

the server application is configured wherein the indication
is recorded by a Transmission Control Protocol/Internet
Protocol (TCP/IP) stack comprising marking an end-
point socket respective to a task of the plurality of tasks
indicative of a local core preference, the TCP/IP stack
storing core-identifier information within the endpoint
socket and storing the endpoint socket in a core-local
data structure specific to the respective core processor.

4. The SMP system according to claim 1 wherein:

the located TCP connection applies subsequent packets
arriving on the located TCP connection on the predeter-
mined core processor to the task local and bound to the
predetermined core processor and processed lock-free.

5. The SMP system according to claim 1, wherein:

the protocol processor is further configured to respond to
arrival of a plurality of packets of an incoming Trans-
mission Control Protocol (TCP) connection on a prede-
termined core processor of the plurality of core proces-
sors by interrogating sockets information to locate an
endpoint socket corresponding to a task local to the

US 9,329,912 B2

17

predetermined core processor with a core preference for
handling the TCP connection using the listening end-
point socket.

6. The SMP system according to claim 5 further compris-

ing:

a Transmission Control Protocol/Internet Protocol (TCP/
IP) stack configured to interrogate sockets information
to find a matching socket with an indicated local core
preference and establish a connection on the predeter-
mined core processor and pass the established connec-
tion to an application task that executes on the predeter-
mined core processor, the established connection being
marked as lockless.

7. The SMP system according to claim 5 wherein:

the protocol processor is configured wherein connection
establishment and passing of the established connection
to a locally-bound server process are attained without
sharing data structures across core processors and with-
out cross-core data sharing and locks.

8. The SMP system according to claim 5 wherein:

the protocol processor is configured in absence of a task
local to the predetermined core processor with an indi-
cated core preference to select any task that is waiting for
the TCP connection by locating a matching endpoint
socket on another core processor or an endpoint socket
that does not have the core-preference indicated on the
endpoint socket.

9. The SMP system according to claim 5 further compris-

ing:

a classifier configured to send initial and subsequent
incoming packets for the TCP/IP connection to the pre-
determined core processor wherein a task on the prede-
termined core processor holds the TCP/IP connection
and the subsequent packets are processed on the prede-
termined core processor without cross-core communi-
cations, the TCP/IP connection identified for lockless
processing by a protocol stack by marking of a lockless
attribute.

10. The SMP system according to claim 1 wherein:

the protocol processor is further configured to process
egress packets passing from a server to a client and
ingress packets passing from the client to the server
without cross-core data sharing and locks wherein
egress packets originating from the server are bound to a
predetermined core processor of the plurality of core
processors at which ingress packets of a Transmission
Control Protocol (TCP) connection also arrive, and the
ingress packets and the egress packets are processed on
the same predetermined core processor.

11. The SMP system according to claim 10 wherein:

the protocol processor uses a lockless attribute marked on
the TCP connection to specify that locks are not required
when processing the TCP connection.

12. A symmetric multi-processing (SMP) system compris-

ing:

a protocol processor configured to
respond to an ingress Transmission Control Protocol
(TCP) connection on a predetermined core processor of
a plurality of core processors by
performing look-up of core-local information to locate a
listening endpoint socket corresponding to a task
local to the predetermined core processor with a core-
preference for handling the TCP connection using the
listening endpoint socket,
when the listening endpoint is located, establishing the
TCP connection on the located listening endpoint
socket, applying the TCP connection to the task local

10

20

35

40

45

50

55

60

65

18

and bound to the predetermined core processor, and
marking the TCP connection as no-lock required, and
when the listening endpoint is not located, passing the
TCP connection to any available task of a matching
socket with semantics preserved; and
respond to arrival of a plurality of packets of the TCP
connection on the predetermined core processor by
interrogating sockets information to locate an endpoint
socket corresponding to the task local to the predeter-
mined core processor.
13. The SMP system according to claim 12 further com-

prising:

a Transmission Control Protocol/Internet Protocol (TCP/
IP) stack configured to interrogate sockets information
to find a matching socket with an indicated local core
preference and establish a connection on the predeter-
mined core processor and pass the established connec-
tion to an application task that executes on the predeter-
mined core processor, the established connection being
marked as lockless.

14. The SMP system according to claim 12 wherein:

the protocol processor is configured wherein connection
establishment and passing of the established connection
to a locally-bound server process are attained without
sharing data structures across core processors and with-
out cross-core data sharing and locks.

15. The SMP system according to claim 12 wherein:

the protocol processor is configured in absence of a task
local to the predetermined core processor with an indi-
cated core preference to select any task that is waiting for
the TCP connection by locating a matching endpoint
socket on another core processor or an endpoint socket
that does not have core-preference indicated on the end-
point socket.

16. The SMP system according to claim 12 further com-

prising:

a classifier configured to send initial and subsequent
incoming packets for the TCP/IP connection to the pre-
determined core processor wherein a task on the prede-
termined core processor holds the TCP/IP connection
and the subsequent packets are processed on the prede-
termined core processor without cross-core communi-
cations, the TCP/IP connection identified for lockless
processing by a protocol stack by marking of a lockless
attribute.

17. A method for symmetric multi-processing (SMP) com-

prising:

creating a plurality of tasks;
binding the plurality of tasks to a plurality of core proces-
sors;
creating a listening endpoint socket corresponding to the
plurality of tasks;
binding and listening on a protocol address common to the
plurality of tasks; and
responding to an ingress Transmission Control Protocol
(TCP) connection on a predetermined core processor of
the plurality of core processors by
performing look-up of core-local information to locate a
listening endpoint socket corresponding to a task
local to the predetermined core processor with a core-
preference for handling the TCP connection using the
listening endpoint socket,
if the listening endpoint is located, establishing the TCP
connection on the located listening endpoint socket,
applying the TCP connection to the task local and
bound to the predetermined core processor, and mark-
ing the TCP connection as no-lock required, and

US 9,329,912 B2
19 20

if the listening endpoint is not located, passing the TCP
connection to any available task of a matching socket
with semantics preserved.
18. The method according to claim 17 further comprising:
responding to arrival of a plurality of packets of the TCP 5
connection on the predetermined core processor of the
plurality of core processors by interrogating sockets
information to locate an endpoint socket corresponding
to the task local to the predetermined core processor
with an indicated core preference. 10

#* #* #* #* #*

